Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset.

نویسندگان

  • Stefan-M Pulst
  • Nieves Santos
  • Dai Wang
  • Huiying Yang
  • Duong Huynh
  • Luis Velazquez
  • K Pattie Figueroa
چکیده

Nine neurodegenerative diseases, collectively referred to as polyglutamine (polyQ) diseases, are caused by expansion of a coding CAG DNA trinucleotide repeat. PolyQ diseases show a strong inverse correlation between CAG repeat length and age of disease onset (AO). Despite this, individuals with identical repeat expansion alleles can have highly variable disease onset indicating that other factors also influence AO. We examined AO in 148 individuals in 57 sibships from the SCA2 founder population in Cuba. The mutant CAG repeat allele explained 57% of AO variance. To estimate heritability of the residual variance after correction for SCA2 repeat length, we applied variance component analysis and determined the coefficient of intraclass correlation. We found that 55% of the residual AO variance was familial. To test candidate modifier alleles in this population, we selected 64 unrelated individuals from a set of 394 individuals who were highly discordant for AO after correction for SCA2 CAG repeat length. We hypothesized that long normal alleles in the other 8 polyQ disease genes were associated with premature disease onset in SCA2. Of the 8 genes tested, only long normal CAG repeats in the CACNA1A gene were associated with disease onset earlier than expected based on SCA2 CAG repeat size using non-parametric tests for alleles (P < 0.04) and genotypes (P < 0.023) after correction for multiple comparisons. CACNA1A variation explained 5.8% of the residual variation in AO. The CACNA1A calcium channel subunit represents an excellent candidate as a modifier of disease in SCA2. It is highly expressed in Purkinje cells (PCs) and is essential for the generation of the P/Q current and the complex spike in PCs. In contrast to other polyQ proteins, which are nuclear, the CACNA1A and SCA2 proteins are both cytoplasmic. Furthermore, small pathologic expansions of the polyQ domain in the CACNA1A protein lead to PC degeneration in SCA6. Future studies are needed to determine whether the modifier effect of CACNA1A relates to neuronal dysfunction or cell death of Purkinje neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyglutamine length-dependent toxicity from α1ACT in Drosophila models of spinocerebellar ataxia type 6

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ) repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes de...

متن کامل

DnaJ-1 and karyopherin α3 suppress degeneration in a new Drosophila model of Spinocerebellar Ataxia Type 6.

Spinocerebellar ataxia type 6 (SCA6) belongs to the family of CAG/polyglutamine (polyQ)-dependent neurodegenerative disorders. SCA6 is caused by abnormal expansion in a CAG trinucleotide repeat within exon 47 of CACNA1A, a bicistronic gene that encodes α1A, a P/Q-type calcium channel subunit and a C-terminal protein, termed α1ACT. Expansion of the CAG/polyQ region of CACNA1A occurs within α1ACT...

متن کامل

Second Cistron in CACNA1A Gene Encodes a Transcription Factor Mediating Cerebellar Development and SCA6

The CACNA1A gene, encoding the voltage-gated calcium channel subunit α1A, is involved in pre- and postsynaptic Ca(2+) signaling, gene expression, and several genetic neurological disorders. We found that CACNA1A coordinates gene expression using a bicistronic mRNA bearing a cryptic internal ribosomal entry site (IRES). The first cistron encodes the well-characterized α1A subunit. The second exp...

متن کامل

Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells

Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder that is caused by a CAG trinucleotide repeat expansion in the CACNA1A gene. As one of the few bicistronic genes discovered in the human genome, CACNA1A encodes not only the α1A subunit of the P/Q type voltage-gated Ca2+ channel CaV2.1 but also the α1ACT protein, a 75 kDa transcription factor sharing the seq...

متن کامل

Molecular mechanism of Spinocerebellar Ataxia type 6: glutamine repeat disorder, channelopathy and transcriptional dysregulation. The multifaceted aspects of a single mutation

Spinocerebellar Ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease characterized by late onset, slowly progressive, mostly pure cerebellar ataxia. It is one of three allelic disorders associated to CACNA1A gene, coding for the Alpha1 A subunit of P/Q type calcium channel Cav2.1 expressed in the brain, particularly in the cerebellum. The other two disorders are Episodic Atax...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 128 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2005